3.706 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+C \cos ^2(c+d x))}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=181 \[ -\frac{2 a \left (C \left (3 a^2+b^2\right )+3 A b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^4 d}+\frac{2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b^3 d}+\frac{2 a^2 \left (a^2 C+A b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^4 d (a+b)}-\frac{2 a C \sin (c+d x) \sqrt{\cos (c+d x)}}{3 b^2 d}+\frac{2 C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 b d} \]

[Out]

(2*(5*a^2*C + b^2*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2])/(5*b^3*d) - (2*a*(3*A*b^2 + (3*a^2 + b^2)*C)*Ellipti
cF[(c + d*x)/2, 2])/(3*b^4*d) + (2*a^2*(A*b^2 + a^2*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^4*(a + b)
*d) - (2*a*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b^2*d) + (2*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.78887, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3050, 3049, 3059, 2639, 3002, 2641, 2805} \[ -\frac{2 a \left (C \left (3 a^2+b^2\right )+3 A b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^4 d}+\frac{2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b^3 d}+\frac{2 a^2 \left (a^2 C+A b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^4 d (a+b)}-\frac{2 a C \sin (c+d x) \sqrt{\cos (c+d x)}}{3 b^2 d}+\frac{2 C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]

[Out]

(2*(5*a^2*C + b^2*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2])/(5*b^3*d) - (2*a*(3*A*b^2 + (3*a^2 + b^2)*C)*Ellipti
cF[(c + d*x)/2, 2])/(3*b^4*d) + (2*a^2*(A*b^2 + a^2*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^4*(a + b)
*d) - (2*a*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b^2*d) + (2*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*b*d)

Rule 3050

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
 + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n
*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*
x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0
] && NeQ[c, 0])))

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx &=\frac{2 C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 b d}+\frac{2 \int \frac{\sqrt{\cos (c+d x)} \left (\frac{3 a C}{2}+\frac{1}{2} b (5 A+3 C) \cos (c+d x)-\frac{5}{2} a C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{5 b}\\ &=-\frac{2 a C \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac{2 C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 b d}+\frac{4 \int \frac{-\frac{5 a^2 C}{4}+a b C \cos (c+d x)+\frac{3}{4} \left (5 a^2 C+b^2 (5 A+3 C)\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^2}\\ &=-\frac{2 a C \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac{2 C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 b d}-\frac{4 \int \frac{\frac{5}{4} a^2 b C+\frac{5}{4} a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^3}+\frac{\left (5 a^2 C+b^2 (5 A+3 C)\right ) \int \sqrt{\cos (c+d x)} \, dx}{5 b^3}\\ &=\frac{2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b^3 d}-\frac{2 a C \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac{2 C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 b d}+\frac{\left (a^2 \left (A b^2+a^2 C\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^4}-\frac{\left (a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 b^4}\\ &=\frac{2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b^3 d}-\frac{2 a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^4 d}+\frac{2 a^2 \left (A b^2+a^2 C\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^4 (a+b) d}-\frac{2 a C \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b^2 d}+\frac{2 C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 b d}\\ \end{align*}

Mathematica [A]  time = 2.28379, size = 248, normalized size = 1.37 \[ \frac{\frac{2 \left (5 a^2 C+15 A b^2+9 b^2 C\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{6 \left (5 a^2 C+5 A b^2+3 b^2 C\right ) \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}+4 C \sin (c+d x) \sqrt{\cos (c+d x)} (3 b \cos (c+d x)-5 a)+8 a C \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )}{30 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]

[Out]

((2*(15*A*b^2 + 5*a^2*C + 9*b^2*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*a*C*(2*EllipticF[(c
+ d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) + 4*C*Sqrt[Cos[c + d*x]]*(-5*a + 3*b*C
os[c + d*x])*Sin[c + d*x] + (6*(5*A*b^2 + 5*a^2*C + 3*b^2*C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1]
 + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c
 + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/(30*b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.558, size = 948, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x)

[Out]

2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((24*C*a*b^3-24*C*b^4)*cos(1/2*d*x+1/2*c)*sin(1/2
*d*x+1/2*c)^6+(20*C*a^2*b^2-44*C*a*b^3+24*C*b^4)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*C*a^2*b^2+16*C*a
*b^3-6*C*b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+15*a^2*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*a*A*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2*b^2+15*a^4*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*a^3*b*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5*a^2*b^2*C*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*a*b^3*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3*b-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b^2+9*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3-9*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^4)/b^4/(a-b)/(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)